
JOURNAL OF COMPUTATIONAL PHYSICS 71, 5G64 (1987j 

Analysis of a Monte Carlo Method for 
Nonlinear Radiative Transfer 

EDWARD W. LARSEN* 

Universit! of Cal$wnia, Los Alamos National Laboratory, 
Los .Alamos, New Mexico 87545 

AND 

BERTRAND MERCIER 

Commissariat d I’knergie Atomique, Centre d’Etudes de Lime&Valenton, 
B.P. No. 27, 94190 ~‘illeneuve-Saint-George& France 

Received June 9, 1986; revised October 15, 1986 

It has recently been proved that solutions of nonlinear radiative transfer problems satisfy a 
maximum principle (Andreev, Kozmanov, and Rachilov, CI.S.S.I?. Compur. Math. Math. Phys. 
23, 104 (1983); Mercier, SIAM J. Math. Anal., in press). In this article it is shown that Monte 
Carlo solutions of such problems, obtained using the method of Fleck and Cummings (J. 
Comput. Phys. 8, 313 (1971 jj, must satisfy this maximum principle for sufticiently small time- 
steps, but can violate it for sufftciently large time-steps. Analyses of the frequency-dependent 
and grey cases are given, and a numerical solution violating the maximum principle is 
discussed. SC’ 1987 Academic Press. Inc. 

I. INTRODUCTION 

A well-known method for obtaining Monte Carlo solutions of nonlinear radiative 
transfer problems is the algorithm proposed by Fleck and Cummings [3]. The 
basis of this method is conceptually straightforward: within each time-step, the non- 
linear transport process is approximated by a linear one, which is solved by a stan- 
dard linear transport Monte Carlo method. This algorithm contains implicit terms 
which lead to a “quasi-scattering” integral in the linearized transport process. 
However, because the algorithm is linear within each time-step, it cannot be fully 
implicit. In particular, opacities are evaluated at the old time-step, and the emission 
term is a product of quantities evaluated at the old and new time-steps. If the 
implicit terms are chosen judiciously, then one can conjecture that the algorithm is 
well behaved and stable for small time-steps, but since explicit terms are present, 
one should also conjecture that the solution might have unphysical behavior for 
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sufficiently large time-steps. In this article we show that both these conjectures are 
true, and we describe the unphysical behavior in some detail. 

Our primary analytical tool is a maximum principle which has recently been 
shown to hold for solutions of nonlinear radiative transfer problems [1, Z]. 
Specifically, we show that “ideal” solutions obtained by the Fleck-Cummings JFC) 
algorithm must satisfy this maximum principle for small time-steps, but may not 
satisfy it for large time-steps. By “ideal” solutions, we mean ones which are free of 
statistical Monte Carlo errors. Therefore, our analysis applies to the differential 
equations which the Monte Carlo method solves, but not to any specific Monte 
Carlo solution. However, in the “ideal” limit of an infinite number of particles an 
zero statistical error, our results do directly apply. The motivation for this article is 
that even though statistical fluctuations can cause any particular Monte Carlo 
solution to satisfy or violate the maximum principle, it is important to know 
whether or not the underlying equations have a solution which must satisfy this 
principle. In addition, these underlying equations have recently formed the basis of 
deterministic algorithms [4], and the analysis in this article can also be applied to 
this type of numerical methodology. 

An outline of the remainder of this article follows. In Section 2 we introduce 
notation by describing the physical problem and stating the maximum principle for 
its solution. In Section 3 we describe the FC algorithm, and in Section 4 we state 
and prove its maximum principle. In Section 5 we discuss some variations of the 
FC algorithm, and in Section 6 we conclude with a brief discussion and a presen- 
tation of a numerical example which violates the maximum principle for large rime- 
steps. 

II. STATEMENT OF THE PROBLEM 

In the absence of material motion, scattering, heat conduction, and internal sour- 
ces, the equations of radiative transfer are [IS] 

~~+n.vz=o(B-z), (2.1) 

at? y$= a(Z- B) dvdQ, (22 j 

with the initial conditions 

Z( x, 0, I’, 0) = Zi( x, n, \’ j, (2.3) 

l-(x, 0) = TJX), j2.4) 

and boundary condition 

z(x, 52, I’, tj = z,(x, n, I’, t), xEaD,n.n<o. 42.5) 
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In these equations, the unknowns are the specific intensity of radiation 
1(x, Q, v, t) and the material temperature T(x, t). [Unless stated otherwise, x 
denotes position in the spatial domain D c R3, Q is a unit vector in R3 denoting 
direction, v E (0, co) denotes frequency, and t > 0 denotes time. Also, I’D is the 
boundary of D, and n is the unit outer normal on do.1 The remaining known 
expressions, all positive, are c (the speed of light), CJ(V, T) (the opacity), 8(r) (the 
material energy density), satisfying 

(2.6) 

where c,(T) is the material heat capacity, and the Planck function 

2hv3 
B(v, T) = 7 (@lf!kT- 1) -1, (2.7) 

where h is Planck’s constant and k is Boltzmann’s constant. B can easily be shown 
to satisfy, for all Y > 0 and T > 0, 

!I!!>() 
aF ' n= 1,2. 

Finally, we define the equilibrium energy density 4(x, tj and the radiation constant 
a by 

e=ji B dv dQ = acp, (2.9) 

8rt5k4 
a==. (2.10) 

The problem posed by (2.1)-(2.5) is linear in I, but in general, highly nonlinear 
in T. Under constraints on (T and 8, it is known [ 1,2] that this problem has a 
solution which satisfies the following: 

MAXIMUM PRINCIPLE. Let 0 < T, < T, be fixed constants, und let Ii, T,, and I, 
satisfi 

and 

B(v, Td d Zi(x, f4 1’) 6 B(v, T,), (2.11) 

T, d Tj(x j d T,, (2.12) 

B(v, T,) d ZJx, 0, v, tj d B(v, T,), xEc?D,Ck-n<O. (2.13) 
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Then, for all x ED and t > 0, 

B(v, T,) d 1(x, R, I’, t) < B(v, T,), 

T, < T(x, t) < T,. 

Thus, if a problem has initial and boundary data that lie between tli’o Planckians, then 
the solution forever lies between these two Planckians. In this article, we show !ha; 
numerical solutions obtained blv the FC algorithm must sati& this maximum priti- 
ciple for sztfficiently small time-steps, but not for sufficientl:,, large time-steps. 

Equations (2.1) and (2.2) imply an energy conservation law which we now 
describe. Letting 

(2.16 j 

denote the radiative energy density, and 

denote the radiative flux, we have from (2.1) and (2.3): 

;(6+E)+WF=O. (2.18) 

Integrating over D, we obtain 

which states that the time rate of change of the total material and radiative energy 
in D is equal to the net gain of radiative energy through aD. In this article we treat 
in detail a version of the FC method which exactly satisfies this conservation law. 

III. THE FLECK-CUMMINGS METHOD 

To describe the FC method, we define a sequence of times 0 = t, < t, < t, < , 
with time steps At, = t, + i - t,, and for t,, d t d t,, + I we consider the following time- 
discretizations of (2.1) and (2.2) 

dir dQ. 

(3.1) 

(33 
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The boundary condition for (3.1) is given by (2.5), and the “initial” conditions for 
(3.1) and (3.2) are known from the previous time-step if n>O, or from (2.3) and 
(2.4) if n = 0. Quantities in the above equations which are subscripted with an 
integer subscript n are evaluated at t,, and quantities subscripted with n + l/2 are 
time-averaged over the nth time-step 

IfI+ L 
I 

1 
n+1,‘2=dt, In s Idt, (3.3) 

(3.4) 

Thus, the opacities in these equations are evaluated at the old time-step, and the 
emission term (Planck function) is approximated as 

B[v, T(x, t)] z B[‘;,;;y f&x, I), 

where 6 is to be determined. By (2.9) and (3.5), we have 

Jf NV, T(x, r)] dv dQ z 6(x, t), (3.6) 

and thus 6(x, t) physically approximates the equilibrium energy density. 
Equations (3.1) and (3.2) are energy-conserving in the following sense: if we 

integrate (3.1) over R, v, and t, < t < t, + r, add this to (3.2), and then integrate the 
resulting equation over x E D, we obtain the conservation law (2.19) integrated over 
t,, < f < t,, + 1. 

In order to solve (3.1)(3.4), we must specify 4. To do this, we note that 

aa 1 a$J 
-=--, 
at #Ll at 

where 

(3.8) 

and we use this result to approximate (2.2) as 

(3.9) 

(3.10) 

Here a is an arbitrary constant satisfying 

(3.11) 
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and we use the symbol $,,+ r to emphasize that this quantity is not equal to 
4 II + I =acT:,,. Eliminating Jn + r between (3.9) and (3.10), we obtain 

Consistent with (3.4), we define 6 as 

d _ A, + NLAt,, jj cn Idv dQ 
,-&+&At,, jjq,B,zdvdQ’ 

(3.13) 

Now we introduce (3.13) into (3.1), and (3.12) into (3.2). We obtain, after some 
straightforward algebra, the underlying equations for the FC method 

where 

i 

cJp.,,(x) = 
47~ j rsn B, dv 

4, 
43.18) 

Operationally, we now solve (3.14), with the previously described “initial” and 
boundary data, using a standard neutronics-based Monte Carlo algorithm [6, 7] or 
one with special modifications [S]. The exact solution of Eq. (3.14) exists, is uni- 
que, and is positive under very weak constraints on 0 [9]. Then we compute IX + I,,z 
from (3.3) and T,Z+, from (3.15). Since d&/dT> 0, this last step can be done uni- 
quely, provided the right side of (3.15) is in the range of 6. 

IV. MAXIMUM PRINCIPLE FOR THE FLECK-CUMMINGS METHOD 

For T, < T,, let us define 

B(v. T,) - B(v, T) -___ 
I-,-T 

(4.1j 
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and 

where p is defined by (3.8), and p by 

p(T) = max dv, T) 
B(b T”) 1 WV7 T) & d* 

8(T,)-b(T) ’ 

ss dv, T! 
NV, T) - NV, TL 1 dt, dQ 

&(T) - 8(TL) 
_ 

Equation (2.8) and 0 < T-c Tu imply 

B(v, T,) - B(v, T) 

TU-T - 

B(v, T) - B(v, 0) > o 
T-O ’ 

(4.2) 

14.3) 

(4.4) 

and since B(v, 0) = 0, we then have 5, > 0. (However, t2 need not be positive.) 
Rearranging (4.4), we get for all 0 < T< T, and 0 < I’< US, 

WV, Tu) >LJ 
B(v, T) T ’ 

We can now prove our main result 

(4.5) 

MAXIMUM PRINCIPLE. Let 0 6 T, < T, be fixed constants, and let I;, Ti, and Ib 
satisfy (2.11) through (2.13). Also, for every n, let 

dr,[max(t,, tA1 G 1. (4.6) 

Then, if I and T, denote the FC specific intensity and material temperature, we 
have for all t > 0, 

Bfv, TL)<lfx, a, v, t)<B(v, T,), 

and for all integers n 2 0 

T,dT,,(x)dT,. 

(4.7) 

(4.8) 

ProoJ: The proof is by induction on the time step n. The induction hypothesis is 
that, for the nth time-step, if Z,, and T, satisfy (2.11) and (2.12) [this is true for 
IZ =O], and if Ib satisfies (2.13) and dt, satisfies (4.6) [these are true for all n by 
assumption], then 
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and 

(4.10) 

First we prove (4.9). To do this, we define 

I&X, Q, v, tj = B(v, T,) - 1(x, Q, 11, f), (4.11) 

and we wish to show I,/I 2 0. Introducing I = B, - $ into (3,14) and rearranging, we 
obtain 

Q(x, 1~) = CJ,$, 
a,( B, - B,,) dv’ 1 f o,,B,dv’ _’ 

where we have introduced B, = B(v, T,) and B,, = B(i), T,). 
By the induction hypothesis and (4.11), $ has non-negative initial and boundary 

values. Thus, since $ satisfies a standard linear transport problem, $ is non- 
negative if the source term Q is non-negative [9]. Using the inequality (4.5) in 
(4.13), we get 

which can be rearranged in the form 

(4.14) 

Using (3.17) we see that Q is non-negative if 

Rearranging, and using (3.8) and (3.18), we obtain the condition 

However, this is satisfied because, by assumption, At, <, d 1. Hence Q 2 0, which 
implies $2 0 and Id B,. 

In a similar manner, one can show that B(v, T, j = B, <I if 
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However, (2.8) implies, for TL < T,, < T,, 

&z-B, &J-B, 
T,-T,<T,- 

(4.19) 

Thus the integrand in (4.17) is larger than the integrand in (4.18) and, therefore, 
(4.18) is satisfied because (4.17) is. This completes the proof of (4.9), which gives 

B(lt, T,) d 1, + ,:2 (x, Q, v) d B(v, 7-u). (4.20) 

Now, to prove (4.10), we shall instead verify the equivalent inequalities 

~(TL)~~(T,,+I)~d(Tu). (4.21) 

Using (3.15) to eliminate t”( T,,, 1), we obtain 

AtA, jj on(B,, - 1, + 1;2 )~v&?~Q(T,~)-&(T,). (4.22)) 

Using (4.20), we find that (4.22) are satisfied if 

Atnfn jj in 

Ar,,fnjja, Bn-BL dlvdL%l. 
gi 7-J - G”iT,) 

(4.23a j 

(4.23b) 

Introducing the definition (4.3) of p, we find that these inequalities are satisfied if 
and only if 

At,,f, P(TJ d 1. (4.24) 

Finally, introducing the definition (3.17) of fir and rearranging, we obtain the 
condition 

At,MT,J - ~Bn~p,nl d 1, (4.25) 

which is satisfied because At,, t2 < 1. This completes the proof of the inequalities 
(4.10), and also of the induction hypothesis. Therefore, the maximum principle is 
proved. 

We note that the condition (4.6) gives sufficient conditions for the maximum 
principle to hold, but not necessary ones. In particular, if (4.6) is violated, then Q in 
Eq. (4.12) can (but need not) be negative for some values of its arguments. Also, if 
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Q has negative values, then $ can (but need not) be negative for some values of its 
arguments. Moreover, for all dt we have from (4.13) 

and thus, even if Q has negative values, its frequency integral is always non- 
negative. For these reasons, it seems likely that. the condition (4.6) is conservative. 
and that it will have to be substantially violated to obtain a solution which violates 
the maximum principle. We shall demonstrate this below in Section 6. 

V. MAXI~WM PRINCIPLES FOR RELATED METHODS 

For an ideal gas, we have 

a(T) = c,, T. (5.81 J 

where c, is a constant. Also, for some applications, &‘( Tj is nearly a linear function 
of T. so that b’(T) = c,( T) is nearly constant. In such situations, one has 

and thus one can replace (3.15) by 

The resulting method does not strictly satisfy energy conservation. but it is simpler 
because (5.3 ) gives T,, + r directly, whereas (3.15) must be solved for T,, + r This 
method aiso has a maximum principle, just like the one derived in Section 4, 
provided d t,, satisfies 

where cl is defined by (4.1). The analysis which leads to this result is very similar to 
that presented in Section 4, and will not be given here. 

For the case of a “grey” problem, CJ is independent of E’, and (2.1 j can be 
integrated over ~1 to yield 

i5.6) 
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1(x, Q, t) = j- 1(x, f22, v, t) dv, 

acT4 
B(T)=jB(v, T)dv==. 

(5.7) 

(5.8) 

Likewise, integrating (3.14) over v, we obtain for the FC equations 

One can now integrate (4.7) over Y and obtain a maximum principle for Iand T, 
with the required bound on At,, being given by (4.6), and [i, t2 defined by 
(4.1t(4.3). However, these bounds were derived by using the inequality (4.5) 
which is relatively crude and does not lead to the weakest possible bound in the 
grey case. It happens that by deriving a maximum principle directly from 
(5.5)-(5.8 j, we obtain the best (weakest) rigorous bound 

A t,, sup 4T)CdT)-d(~)l < 1, (5.11) 
7-L<T<TlJ 

T”, - P P-T; 
&(T,)-6(T)’ b(T)-b(T,) I ’ 

If (5.10) is replaced by 

T At,,frzon - 
rz+l=Tn+- 

C 1 (I, + 1:2 - B,, 1 dv, 
D. n 

then the bound on At,, which assures the maximum principle is 

6 1. 

(5.12) 

(5.13 j 

(5.14) 

VI. NUMERICAL RESULTS AND DISCUSSION 

We consider a slight variation of a problem discussed by Fleck and Cummings 
[3]. In our problem, a 4.0 cm slab with opacity 

(6.1) 
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material energy 

cF( T) = (ylaT;) T, (6.2j 

and initial temperature 

Ti = 0.001 keV (6.3 j 

is heated on the left by a Planckian source with temperature 

T,, = 1.0 keV (6.4) 

and on the right by a Planckian source with temperature T;. The constants in this 
problem are 

y. = 21 keV’/cm, (6&i; 

y, = 0.5917, (6.5b) 

and we consider the multifrequency algorithm described in Section 5 with IX = 1. 
(This algorithm is identical to the one described in Sect. 4 because d is linear in T.) 

The FC solution of this problem must satisfy the maximum principle, with 
T, = T; and T, = T,,, provided At satisfies the bound (5.4). Using (6.1) and (6.2), 
and omitting much straightforward algebra, one can reformulate this bound as 

where 

x 
1 

F(r)=,,?* (I +nj(l+rnj’ 
O<r<l, 

(6.6) 

(6.:;) 

and 

y2=5.41f x 1OW” set/cm. 

The function F(rj is plotted in Fig. 1. It decreases monotonically from F(0) = cc 
to F( 1) = 7c’/6 - I = 0.645 as r increases from 0 to 1. Using F(O.001) = 6.492, 
Eq. (6.6) yields 

At < 1.827 x lo-l3 set i 6.8 ) 

as the theoretical bound on At which guarantees that the solution will satisfy the 
maximum principle. 

This problem differs from the original FleckkCummings problem [3] only in that 
in [3], there is no source of photons on the right edge of the slab. This “vacuum” 
boundary condition corresponds to a Planckian with zero temperature; therefore, 
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1 
yo-4 

lo+ 10' 

r 

FIG. 1. The function F(r). 

the exact solution of this problem satisfies the maximum principle with 
T, = 1.0 keV and TL = 0.0 keV. However, since F(0) = cr,, the bound (6.6) gives 
dt=O, and thus our theory does not guarantee a Monte Carlo solution satisfying 
the maximum principle for any positive time-step. Nevertheless, our calculations 
indicate that the FC solution does satisfy the maximum principle, roughly for 

At < 7.4 x 1OW” sec. (6.9) 

In [3], Fig. 4 clearly displays a violation of the maximum principle for 
At = 2 x 10 -lo set, but not in Fig. 3 for At = 10 -lo sec. However, the Fig. 3 plot is 
for t = 2 x 10 -lo set, hence is the result after two time-steps. For At = lo- lo set, our 
calculations show a violation of the maximum principle only at the end of the first 
time-step, and hence this violation is not visible at later times. 

In Fig. 2, we plot the material temperature for our problem across the slab at the 
end of one time step, with At = 2 x lOPi sec. As in [3], we divide the slab into 10 
equal spatial cells, and cell-average temperatures are plotted at cell centers and are 
joined by straight lines. Since the difference between our problem and the problem 
in [3] is small, our result agrees fairly well with that shown in Fig. 4 in [3], and 
the violation of the maximum principle in the leftmost cell is apparent. This 
violation disappears in our problem for At roughly satisfying (6.9). This numerically 
observed bound is considerably larger than the theoretical bound (6.8). 

These results indicate that our general theoretical bound (4.6) is very conser- 
vative. That is, the smallest value of At for which the FC solution will violate the 
maximum principle can be much larger than the theoretical bound which guaran- 
tees that the maximum principle will not he violated. 
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CI DETERMIMISTIC 

. MONTE CARLO 

FIG, 2. Material temperatures for I = dr = 2 x 10 ~I0 sec. 

We now discuss, with little detail, some additional results which we have obser- 
ved in our numerical experimentation. In particular, we have run our problem for 
longer times, using the “pure” FC algorithm described above, also using the ran- 
dom walk approximation to speed up the numerical calculations [S], and 
additionally, using a deterministic method very similar to that described in [4] and 
based directly on the multifrequency method described above in Section 5. In all 
cases we observed very similar behavior. For At = 2 x lo-” set, the solutions 
violate the maximum principle in the leftmost cell, but after a few time-steps this 
inaccuracy disappears and the solutions then converge to the correct steady-state 
solution. (The material temperatures are plotted in Fig. 2 for the two Monte Carlo 
methods, which agree to within 0.05 keV, and the deterministic method.) As the 
time step is increased, the solutions after one time-step increase in the leftmost ceil, 
the violation of the maximum principle can extend to two or more cells, and an 
increasingly large number of time steps is required for this inaccluracy to disappear 
and the solutions to converge to the steady-state solution. For every dl which we 
selected, the solutions did eventually converge to the correct steady-state solution; 
thus, in this sense, the method is stable. 

Finally, in some further experimentation on our problem, we found, in general, 
that for any fixed At and Tj # To, we could always make the solutions violate the 
maximum principle after one time-step by taking the opacity multiplier y. large 
enough. 

We now summarize our analytical and numerically-observed results. 

(i) The ideal FC solution must satisfy the maximum principle for a small 
enough time-step and opacity multiplier, but it can, and generally does, violate the 
maximum principle for a large enough time-step or opacity multiplier. 

(ii) The theoretical bound (4.6) on At, which guarantees that the FC solution 
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satisfies the maximum principle, is much smaller than the actual value of At at 
which the violation of the maximum principle occurs. Thus, although this 
theoretical bound is correct, it is very conservative and not likely to be useful in 
predicting how large a time step can be chosen before the maximum principle is 
violated. 

(iii) The violation of the maximum principle occurs in pure Monte Carlo, 
Monte Carlo with random walk, and deterministic solutions which are obtained 
using, as a basis, the algorithm described in Section 3. These violations occur 
because of properties of the underlying equations in Section 3, not because of the 
use of an inadequate number of particles in the Monte Carlo methods, or an inade- 
quate differencing scheme in the deterministic methods. 

(iv) The FC algorithm appears to be stable, in the sense that for every finite 
At, the FC solution of our problem remains bounded and approaches the correct 
steady-state solution as t + co. However, for large and increasing At, the transient 
part of the solution becomes increasingly unphysical for increasingly many time- 
steps. 
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